

    
      
          
            
  
Welcome to DIMEpy’s documentation!

[image: PyPI - Python Version] [image: PyPI] [image: PyPI - License] [image: DOI] [image: PyPI - Status]

Python package for the high-throughput nontargeted metabolite
fingerprinting of nominal mass direct injection mass spectrometry
directly from mzML files.

This work is very much inspired by the methods detailed in
High-throughput, nontargeted metabolite fingerprinting using nominal
mass flow injection electrospray mass spectrometry (Beckmann, et al,
2008) [https://www.nature.com/articles/nprot.2007.500].


Features


	Loading mass spectrometry files from mzML.


	Support for polarity switching.


	MAD-estimated infusion profiling.






	Assay-wide outlier spectrum detection.


	Spurious peak elimination.


	Spectrum export for direct dissemination using Metaboanalyst.


	Spectral binning.


	Value imputation.


	Spectral normalisation.


	including TIC, median, mean…






	Spectral transformation.


	including log10, cube, nlog, log2, glog, sqrt, ihs…






	Export to array for statistical analysis in Metaboanalyst.







Contributors


	Lead Developer: Keiron O’Shea (keo7@aber.ac.uk)


	Developer: Rob Bolton (rab26@aber.ac.uk)


	Project Supervisor: Chuan Lu (cul@aber.ac.uk)


	Project Supervisor: Luis AJ Mur (lum@aber.ac.uk)


	Methods Expert: Manfred Beckmann (meb@aber.ac.uk)







License

DIMEpy is licensed under the GNU General Public License
v3.0 [https://raw.githubusercontent.com/AberystwythSystemsBiology/DIMEpy/master/LICENSE].


Contents:


	Installation

	Getting Started
	Loading a single file

	Working with multiple files





	Modules
	dimepy.Spectrum

	dimepy.SpectrumList

	dimepy.Scan





	Example Scripts










Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Installation

DIMEpy requires Python 3+ and is unfortunately not compatible with
Python 2. If you are still using Python 2, a clever workaround is to
install Python 3 and use that instead.

You can install it through pypi using pip:

pip install dimepy





If you want the ‘bleeding edge’ version this, you can also install
directly from this repository using git - but beware of dragons:

pip install git+https://www.github.com/AberystwythSystemsBiology/DIMEpy









          

      

      

    

  

    
      
          
            
  
Getting Started

To use the package, type the following into your Python console:

>>> import dimepy





At the moment, this pipeline only supports mzML files. You can easily
convert proprietary formats to mzML using
ProteoWizard [http://www.proteowizard.org/download.html].


Loading a single file

If you are only going to load in a single file for fingerprint matrix
estimation, then just create a new spectrum object. If the sample
belongs to a characteristic, it is recommend that you also pass it
through when instantiating a new Spectrum object.

>>> filepath = "/file/to/file.mzML"
>>> spec = dimepy.Spectrum(filepath, identifier="example", stratification="class_one")
/file/to/file.mzML





By default the Spectrum object doesn’t set a snr estimator. It is
strongly recommended that you set a signal to noise estimation
method when instantiating the Spectrum object.

If your experimental protocol makes use of mixed-polarity scanning, then
please ensure that you limit the scan ranges to best match what polarity
you’re interested in analysing:

>>> spec.limit_polarity("negative")





If you are using FIE-MS it is strongly recommended that you use just the
infusion profile to generate your mass spectrum. For example, if your
scan profiles look like this:

  |        _
T |       / \
I |      /   \_
C |_____/       \_________________
  0     0.5     1     1.5     2 [min]





Then it is fair to assume that the infusion occured during the scans
ranging from 30 seconds to 1 minute. The limit_infusion() method
does this by estimating the median absolute deviation (MAD) of total ion
count (TIC) before limiting the profile to the range between the time
range in which whatever multiple of MAD has been estimated:

>>> spec.limit_infusion(2) # 2 times the MAD.





Now, we are free to load in the scans to generate a base mass_spectrum:

>>> spec.load_scans()





You should now be able to access the generated mass spectrum using the
masses and intensities attributes:

>>> spec.masses
array([ ... ])
>>> spec.intensities
array([ ... ])








Working with multiple files

A more realistic pipeline would be to use multiple mass-spectrum files.
This is where things really start to get interesting. The
SpectrumList object facilitates this through the use of the
append method:

>>> speclist = dimepy.SpectrumList()
>>> speclist.append(spec)





You can make use of an iterator to recursively generate Spectrum
objects, or do it manually if you want.

If you’re only using this pipeline to extract mass spectrum for
Metabolanalyst, then you can now simply call the _to_csv method:

>>> speclist.to_csv("/path/to/output.csv", output_type="metaboanalyst")





That being said, this pipeline contains many of the preprocessing
methods found in Metaboanalyst - so it may be easier for you to just use
ours.

As a diagnostic measure, the TIC can provide an estimation of factos
that may adversely affect the overal intensity count of a run. As a
rule, it is common to remove spectrum in which the TIC deviates 2/3
times from the median-absolute deviation. We can do this by calling the
detect_outliers method:

>>> speclist.detect_outliers(thresh = 2, verbose=True)
Detected Outliers: outlier_one;outlier_two





A common first step in the analysis of mass-spectrometry data is to bin
the data to a given mass-to-ion value. To do this for all Spectrum
held within our SpectrumList object, simply apply the bin
method:

>>> speclist.bin(0.25) # binning our data to a bin width of 0.25 m/z





In FIE-MS null values should concern no more than 3% of the total number
of identified bins. However, imputation is required to streamline the
analysis process (as most multivariate techniques are unable to
accomodate missing data points). To perform value imputation, just use
value_imputate:

>>> speclist.value_imputate()





Now transforming and normalisating the the spectrum objects in an
samples independent fashion can be done using the following:

>>> speclist.transform()
>>> speclist.normalise()





Once completed, you are now free to export the data to a data matrix:

>>> speclist.to_csv("/path/to/proc_metabo.csv", output_type="matrix")





This should give you something akin to:











	Sample ID

	M0

	M1

	M2

	M3

	…





	Sample 1

	213

	634

	3213

	546

	…



	Sample 2

	132

	34

	713

	6546

	…



	Sample 3

	1337

	42

	69

	420

	…












          

      

      

    

  

    
      
          
            
  
Modules


dimepy.Spectrum

Initialise Spectrum object for a given mzML file.


	
class dimepy.Spectrum(filepath: str, identifier: str, injection_order: int = None, stratification: str = None, snr_estimator: str = False, peak_type: str = 'raw', MS1_precision: float = 5e-06, MSn_precision: float = 2e-05)

	Initialise Spectrum object for a given mzML file.


	
__init__(filepath: str, identifier: str, injection_order: int = None, stratification: str = None, snr_estimator: str = False, peak_type: str = 'raw', MS1_precision: float = 5e-06, MSn_precision: float = 2e-05)

	Initialise a Spectrum object for a given mzML file.


	Arguments:

	filepath (str): Path to the mzML file to parse.

identifier (str): Unique identifier for the Spectrum object.

injection_order (int): The injection number of the Spectrum object.

stratification (str): Class label of the Spectrum object.

snr_estimator (str): Signal to noise method used to filter.



	Currently supported signal-to-noise estimation methods are:

	
	‘median’ (default)


	‘mean’


	‘mad’











peak_type (raw): What peak type to load in.



	Currently supported peak types are:

	
	raw (default)


	centroided


	reprofiled















MS1_precision (float): Measured precision for the MS level 1.

MSn_precision (float): Measured precision for the MS level n.






	
bin(bin_width: float = 0.01, statistic: str = 'mean')

	”
Method to conduct mass binning to nominal mass and mass spectrum
generation across a Spectrum.


	Arguments:

	bin_width (float): The mass-to-ion bin-widths to use for binning.

statistic (str): The statistic to use to calculate bin values.



	Supported statistic types are:

	
	
	‘mean’ (default): compute the mean of intensities for points within each bin.

	Empty bins will be represented by NaN.







	
	‘std’: compute the standard deviation within each bin. This is

	implicitly calculated with ddof=0.







	
	‘median’: compute the median of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘count’: compute the count of points within each bin.

	This is identical to an unweighted histogram. values array is not referenced.







	
	‘sum’: compute the sum of values for points within each bin.

	This is identical to a weighted histogram.







	
	‘min’: compute the minimum of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘max’: compute the maximum of values for point within each bin.

	Empty bins will be represented by NaN.

























	
limit_infusion(threshold: int = 3) → None

	This method is a slight extension of Manfred Beckmann’s (meb@aber.ac.uk)
LCT/Q-ToF scan retrieval method in FIEMSpro in which we use the median absolute
deviation of all TICs within a Spectrum to determine when
the infusion has taken place.

Consider the following Infusion Profile:

       _
      / \ 
     /   \_
____/       \_________________
0     0.5     1     1.5     2 [min]
    |--------| Apex





We are only interested in the scans in which the infusion takes place
(20 - 50 seconds). Applying this method changes the to_use values to only
be True where the TIC is >= TIC * mad_multiplier.

Arguments:



	mad_multiplier (int): The multiplier for the median absolute

	deviation method to take the infusion profile from.













	
limit_polarity(polarity: str) → None

	Limit the Scans found within the mzML file to whatever polarity is given.
This should only be called where fast-polarity switching is used.


	Arguments:

	polarity (str): polarity type of the scans required



	Supported polarity types are:

	
	‘positive’


	‘negative’




















	
load_scans() → None

	This method loads the scans in accordance to whatever Scans are
set to True in the to_use list.


Note

If you want to actually make use of masses and intensities
(you probably do), then ensure that you call this method.








	
remove_spurious_peaks(bin_width: float = 0.01, threshold: float = 0.25, scan_grouping: float = 50.0)

	Method that’s highly influenced by Jasen Finch’s (jsf9@aber.ac.uk)
binneR, in which spurios peaks can be removed. At the time of writing,
this method has serious performance issues and needs to be rectified.
but should still work as intended (provided that you don’t mind how long
it takes to complete)


	Arguments:

	bin_width (float): The mass-to-ion bin-widths to use for binning.


	threshold (float): Percentage of scans in which a peak must be in

	in order for it to be considered.



	scan_grouping (float): Mass-to-ion scan groups, this splits the

	scans into groups to ease the processing somewhat. It
is strongly recommended that you keep this at it’s default
value of of 50.0










Note

load_scans() must first be run in order for this to work.








	
reset() → None

	A method to reset the Spectrum object in its entirety.












dimepy.SpectrumList


	
class dimepy.SpectrumList

	

	
__init__()

	Initialize self.  See help(type(self)) for accurate signature.









	
append(spectrum: dimepy.spectrum.Spectrum)

	Method to append a Spectrum to the SpectrumList.


	Arguments:

	spectrum (Spectrum): A Spectrum object.










	
bin(bin_width: float = 0.5, statistic: str = 'mean')

	Method to conduct mass binning to nominal mass and mass spectrum
generation across a SpectrumList.



	Arguments:

	bin_width (float): The mass-to-ion bin-widths to use for binning.

statistic (str): The statistic to use to calculate bin values.



	Supported statistic types are:

	
	
	‘mean’ (default): compute the mean of intensities for points within each bin.

	Empty bins will be represented by NaN.







	
	‘std’: compute the standard deviation within each bin. This is

	implicitly calculated with ddof=0.







	
	‘median’: compute the median of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘count’: compute the count of points within each bin.

	This is identical to an unweighted histogram. values array is not referenced.







	
	‘sum’: compute the sum of values for points within each bin.

	This is identical to a weighted histogram.







	
	‘min’: compute the minimum of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘max’: compute the maximum of values for point within each bin.

	Empty bins will be represented by NaN.




























	
detect_outliers(threshold: float = 1, verbose: bool = False)

	Method to locate and remove outlier spectrum using the median-absolute
deviation of the TICS within the SpectrumList.


Note

This method is still being actively developed, so is likely to
change.




	Arguments:

	threshold (int): Threshold for MAD outlier detection.


	verbose (bool): Whether to print out the identifiers of

	the removed Spectrum.














	
normalise(method: str = 'tic') → None

	Method to conduct sample independent intensity normalisation.


	Arguments:

	method (str): The normalisation method to use.


	Currently supported normalisation methods are:

	
	
	‘tic’ (default): Normalise to the total ion current

	of the Spectrum:







	‘median’: Normalise to the meidan of the Spectrum.


	‘mean’: Normalise to the mean of the Spectrum.

















	
to_csv(fp: str, sep: str = ', ', output_type: str = 'base')

	Method to export the spectrum list.


	Arguments:

	fp (str): Filepath to export the file to.

sep (str): Separator to use for file export

output_type (str): What form of output to export:



	Supported output types are:

	
	*’base’: masses and intensities of each spectrum in a column each

	in a single CSV file.



	*’matrix’: The way in which I personally analyse the data.

	This will not work unless the data has been binned.





*’metaboanalyst’: A zipfile ready for uploading to metaboanalyst.

















	
transform(method: str = 'log10') → None

	Method to conduct sample independent intensity transformation.


	Arguments:

	method (str): The transformation method to use.


	Currently supported transformation methods are:

	*’log10’ (default)
*’cube’
*’nlog’
*’log2’
*’glog’
*’sqrt’
*’ihs’














	
value_imputate(method: str = 'min', threshold: float = 0.5) → None

	A method to deploy value imputation to the Spectrum List.


Note

As most metabolite selection methods fail to deal with missing
values, it is strongly recommended to run this method once binning has
been performed over the SpectrumList




	Arguments:

	method (str): Method to use for value imputation.



	Currently supported value imputation methods are:

	
	
	‘basic’ (default)Replace thresholded null values

	with half the minimum intensity value per Spec







	
	‘mean’: Replace thresholded null values with the

	mean intensity value per Spec.







	
	‘min’: Replace thresholded null values with the

	minimum intensity value per Spec.







	
	‘median’: Replace thresholded null values with the

	minimum intensity value per Spec.

















	threshold (float): Number of samples an intensity needs to be

	present in to be taken forward for imputation.




















dimepy.Scan


	
class dimepy.Scan(pymzml_spectrum, snr_estimator: str = False, peak_type: str = 'raw')

	
	
__init__(pymzml_spectrum, snr_estimator: str = False, peak_type: str = 'raw')

	Initialise a Scan object for a given pymzML Spectrum.

Arguments:


pymzml_spectrum (pymzml.Spectrum): Spectrum object.

snr_estimator (str): Signal to noise method used to filter.

peak_type (str): Peaks to take forward.









	
bin(bin_width: float = 0.01, statistic: str = 'mean') → None

	Method to conduct mass binning to nominal mass and mass spectrum
generation.


	Arguments:

	bin_width (float): The mass-to-ion bin-widths to use for binning.

statistic (str): The statistic to use to calculate bin values.



	Supported statistic types are:

	
	
	‘mean’ (default): compute the mean of intensities for points within each bin.

	Empty bins will be represented by NaN.







	
	‘std’: compute the standard deviation within each bin. This is

	implicitly calculated with ddof=0.







	
	‘median’: compute the median of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘count’: compute the count of points within each bin.

	This is identical to an unweighted histogram. values array is not referenced.







	
	‘sum’: compute the sum of values for points within each bin.

	This is identical to a weighted histogram.







	
	‘min’: compute the minimum of values for points within each bin.

	Empty bins will be represented by NaN.







	
	‘max’: compute the maximum of values for point within each bin.

	Empty bins will be represented by NaN.


































          

      

      

    

  

    
      
          
            
  
Example Scripts

Here’s a quick run through of key functionality in DIMEpy.l

import dimepy
import os

data_dir = "/path/to/mzMLs"

sl = dimepy.SpectrumList()

for fn in os.listdir(data_dir):
     # Appending the file name to the data directory
     fp = os.path.join(data_dir,fn)

     # We only have two classes, denoted by the first letter of the file
     strat = fn[0]

     # Note how I'm applying mean-based snr estimation
     spec = dimepy.Spectrum(fp, fn, stratification=strat, snr_estimator="mean")

     # As these are polarity-switching, I'm limiting to positive
     spec.limit_polarity("positive")

     # A threshold of 3 seemed fine from earlier.
     spec.limit_infusion(3)

     # Make sure I load the scans
     spec.load_scans()

     # Appending the Spectrum object to the SL
     sl.append(spec)

sl.detect_outliers(3, verbose=True)

sl.bin(0.25)
sl.value_imputate()
sl.transform()
sl.normalise()

sl.to_csv("/path/to/output.csv", output_type="matrix")









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   d
   


   
     		 	

     		
       d	

     
       	[image: -]
       	
       dimepy	
       

     
       	
       	   
       dimepy.Scan	
       

     
       	
       	   
       dimepy.Spectrum	
       

     
       	
       	   
       dimepy.SpectrumList	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | D
 | L
 | N
 | R
 | S
 | T
 | V
 


_


  	
      	__init__() (dimepy.Scan method)

      
        	(dimepy.Spectrum method)


        	(dimepy.SpectrumList method)


      


  





A


  	
      	append() (dimepy.SpectrumList method)


  





B


  	
      	bin() (dimepy.Scan method)

      
        	(dimepy.Spectrum method)


        	(dimepy.SpectrumList method)


      


  





D


  	
      	detect_outliers() (dimepy.SpectrumList method)


      	dimepy.Scan (module)


  

  	
      	dimepy.Spectrum (module)


      	dimepy.SpectrumList (module)


  





L


  	
      	limit_infusion() (dimepy.Spectrum method)


  

  	
      	limit_polarity() (dimepy.Spectrum method)


      	load_scans() (dimepy.Spectrum method)


  





N


  	
      	normalise() (dimepy.SpectrumList method)


  





R


  	
      	remove_spurious_peaks() (dimepy.Spectrum method)


  

  	
      	reset() (dimepy.Spectrum method)


  





S


  	
      	Scan (class in dimepy)


  

  	
      	Spectrum (class in dimepy)


      	SpectrumList (class in dimepy)


  





T


  	
      	to_csv() (dimepy.SpectrumList method)


  

  	
      	transform() (dimepy.SpectrumList method)


  





V


  	
      	value_imputate() (dimepy.SpectrumList method)


  







          

      

      

    

  _static/ajax-loader.gif





_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/down.png





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to DIMEpy’s documentation!
        


        		
          Installation
        


        		
          Getting Started
          
            		
              Loading a single file
            


            		
              Working with multiple files
            


          


        


        		
          Modules
          
            		
              dimepy.Spectrum
            


            		
              dimepy.SpectrumList
            


            		
              dimepy.Scan
            


          


        


        		
          Example Scripts
        


      


    
  

_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





